Рубрики

ВОРОТА | GATE-CS-2001 | Вопрос 24

Предположим, что отношение смежности вершин в графе представлено в таблице Adj (X, Y). Какой из следующих запросов не может быть выражен выражением реляционной алгебры постоянной длины?
(A) Список всех вершин, смежных с данной вершиной
(B) Перечислите все вершины, которые имеют собственные петли
(C) Перечислите все вершины, которые принадлежат циклам меньше трех вершин
(D) Список всех вершин, достижимых из данной вершины

Ответ: (D)
Объяснение: (A) Это простой запрос, так как нам нужно найти (X, Y) для данного X.

(B) Это также просто, так как нужно найти (X, X)

(C): -> Цикл <3. Означает цикл длины 1 и 2. Цикл длины 1 легко. То же самое, что и сам цикл. Цикл длины 2 также не слишком сложен для вычисления. Хотя это будет немного сложным, нужно будет сделать так, чтобы (X, Y) & (Y, X) одновременно присутствовали и X! = Y ,. Мы можем сделать это с постоянным запросом RA.

Рекомендуемые посты:

ВОРОТА | GATE-CS-2001 | Вопрос 24

0.00 (0%) 0 votes