Рубрики

ВОРОТА | GATE-CS-2005 | Вопрос 90

Ниже приведена диаграмма Хассе для множества [{a, b, c, d, e}, ≤]

Poset является

(А) не решетка
(B) решетка, но не распределительная решетка
(C) дистрибутивная решетка, но не булева алгебра
(D) булева алгебра

Ответ: (Б)
Объяснение:

It is a lattice but not a distributive lattice.

Table for Join Operation of above Hesse diagram

V |a b c d e
________________
a |a a a a a
b |a b a a b
c |a a c a c
d |a a a d d
e |a b c d e

Table for Meet Operation of above Hesse diagram

^ |a b c d e
_______________
a |a b c d e
b |b b e e e
c |c e c e e
d |d e e d e
e |e e e e e

Therefore for any two element p, q in the lattice (A,<=)

p <= p V q ; p^q <= p

This satisfies for all element (a,b,c,d,e).

which has 'a' as unique least upper bound and 'e' as unique 
greatest lower bound.

The given lattice doesn't obey distributive law, so it is 
not distributive lattice,

Note that for b,c,d we have distributive law

b^(cVd) = (b^c) V (b^d). From the diagram / tables given above 
we can verify as follows,

(i) L.H.S. = b ^ (c V d) = b ^ a = b

(ii) R.H.S. = (b^c) V (b^d) = e v e = e

b != e which contradict the distributive law. 
Hence it is not distributive lattice.

so, option (B) is correct. 

Тест на этот вопрос

Рекомендуемые посты:

ВОРОТА | GATE-CS-2005 | Вопрос 90

0.00 (0%) 0 votes