Для каждого элемента в наборе размером 2n подбрасывается несмещенная монета. 2n броски монет независимы. Элемент выбирается, если соответствующий бросок монеты был головой. Вероятность того, что будет выбрано ровно n элементов:
(A) (2nCn) / (4 ^ n)
(B) (2nCn) / (2 ^ n)
(С) 1 / (2 нКн)
(D) 1/2
Ответ: (А)
Пояснение: Вопрос в основном о вероятности n голов из 2n бросков монет.
P = 2nCn ∗ ((1/2) ^ n) ∗ ((1/2) ^ n) = (2nCn) / (4 ^ n)
Рекомендуемые посты:
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 52
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 65
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 64
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 53
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 54
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 55
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 56
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 57
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 58
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 59
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 60
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 61
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 62
- ВОРОТА | Sudo GATE 2020 Mock I (27 декабря 2019) | Вопрос 63
- ВОРОТА | Sudo GATE 2020 Mock II (10 января 2019 года) | Вопрос 65
0.00 (0%) 0 votes