Рубрики

ВОРОТА | GATE CS 2013 | Вопрос 47


(А) А
(Б) Б
(С) С
(D) D

Ответ: (A) (D)
Объяснение:

Данное утверждение:

¬ ∃ x (∀y (α) ∧ ∀z (β))

where ¬ is a negation operator, ∃ is Existential Quantifier with the 
meaning of "there Exists", and ∀ is a Universal Quantifier 
with the meaning   " for all " , and α, β can be treated as predicates.

here we can apply some of the standard 
results of Propositional and 1st order logic on the given statement, 
which are as follows :

[ Result 1 : ¬(∀x P(x)) <=> ∃ x¬P(x), i.e. negation 
of "for all" gives "there exists" and negation also gets applied to scope of 
quantifier, which is P(x) here. And also negation of "there exists" gives "for all", 
and negation also gets applied to scope of quantifier  ]

[ Result 2 :  ¬ ( A ∧ B ) = ( ¬A  ∨ ¬B )  ]

[ Result 3 :  ¬P  ∨ Q <=> P -> Q ]

[ Result 4 : If P ->Q, then by Result of Contrapositive,  ¬Q -> ¬P  ]

Теперь нам нужно использовать эти результаты, как показано ниже:


 

¬ ∃ x ( ∀y(α) ∧ ∀z(β) )                 [ Given ]

=> ∀ x (¬∀y(α) ∨ ¬∀z(β) )          [ after applying Result 1 & Result 2 ]

=> ∀ x ( ∀y(α) -> ¬∀z(β) )     [after applying Result 3 ]

=> ∀ x ( ∀y(α) -> ∃z(¬β) )      [after applying Result 1]

which is same as the statement C. 

Hence the Given Statement is logically Equivalent
to the statement C.

Now, we can also prove that given statement is logically equivalent to the statement
 in option  B.

Let's see how !

The above derived statement is :

∀ x ( ∀y(α) -> ∃z(¬β) )

Now this statement can be written as (or equivalent to) :

=> ∀ x ( ∀z(β) -> ∃y(¬α) )     [after applying Result 4 ]

And this statement is same as statement B. 
Hence the Given statement is also logically equivalent 
to the statement B.

So, we can conclude that the Given statement is NOT logically equivalent to the 
statements A and D.

Следовательно, правильный ответ — вариант А и вариант D. Но в GATE 2013 года
были даны всем за этот вопрос.
Тест на этот вопрос

Рекомендуемые посты:

ВОРОТА | GATE CS 2013 | Вопрос 47

0.00 (0%) 0 votes